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Abstract

We have constructed a lattice Wigner–Weyl code to expand the Buot–Jensen algorithm to calculation of electron

transport in two-dimensional cylindrically symmetric structures. Almost all of the numerical simulations to date have

dealt with the restricted problem of one-dimensional transport. In real devices, electrons are not confined to a single

transport dimension and the coulombic potential is fully present and felt in three dimensions. We show the derivation

of the 2D equation in cylindrical coordinates as well as approximations employed in the calculation of the four-dimen-

sional convolution integral of the Wigner function and the potential. We work under the assumption that longitudinal

transport is more dominant than radial transport and employ parallel processing techniques. The total transport is cal-

culated in two steps: (1) transport the particles in the longitudinal direction in each shell separately, then (2) each shell

exchanges particles with its nearest neighbor. Most of this work is concerned with the former step: A 1D space and 2D

momentum transport problem. Time evolution simulations based on these method are presented for three different

cases. Each case lead to numerical results consistent with expectations. Discussions of future improvements are

discussed.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Electron transport in a resonant tunneling structure (RTS) has been studied in detail over the past dec-

ade [3–6,9,11]. Almost all of the numerical simulations have restricted the problem to one-dimensional

transport. Much progress has been made using the 1D theory, however, in real devices electrons are not

confined to transport in a single dimension and the coulombic potential is fully present and felt in three
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dimensions. Here, we present a method for numerical simulation of electronic transport through a cylindri-

cal device that possesses azimuthal symmetry. Fig. 1(a) shows a schematic representation of such a device.

We work under the assumption that longitudinal transport dominants over the radial transport. The to-

tal transport is calculated in two steps: (1) transport the particles in the longitudinal direction in each shell

separately, then (2) each shell exchanges particles with its nearest neighbor. During a given time step the
particles are advanced longitudinally through the device, as in a 1D problem, but with the inclusion of ra-

dial momentum. This changes the form of the potential and interaction terms of the familiar 1D Wigner

function (transport) equation (WFE). Since the latter step is computationally simple, most of this work

is concerned with the former step: A 1D space and 2D momentum transport problem (1x + 2k). In this

paper, the WFE is solved self-consistently with the Poisson equation.

In order to perform the numerical simulation, parallel programming techniques are used. A simplest way

to attack this problem to slice up the device into cylindrically concentric shells as shown in Fig. 1(b). The

two above steps now become: (1) each processor (shell) calculates the (1x + 2k) transport problem, then (2)
each processor exchanges particle information with its nearest neighbor.

This papers is organized as follows: The first three sections detail the derivations: Section 2 the 2D WFE

in cylindrical coordinates (assuming azimuthal symmetry), and Sections 3 and 4 the discretization. Section 5

discusses different methods of solving the 1x + 2k problem in regard to the limitations of today�s compu-

tational resources. This includes a re-derivation of the potential term in the WFE and a splitting of the po-

tential into static (conduction band edge) and changing (self-consistent) potentials. Finally, our concluding

remarks are in Section 7.
2. Derivation

The 3D form of the Wigner function equation (WFE) can be written as (scattering will be added in later)
df ðq; kÞ
dt

¼ � �hk
m� � rqf ðq; kÞ �

i

ð2pÞ3�h

Z
dk0

Z
2dye�2iðk�k0Þ�yfV ðqþ yÞ � V ðq� yÞgf ðq; k0Þ. ð1Þ
The derivation of the WFE was in the same vein as Frensley [5] (but kept in full 3D form here), and, as he

has noted, has been derived while assuming no boundaries exist. Because of this, the integral limits have

been omitted in the above and will be discussed later.

First, let us rewrite this equation in cylindrical coordinates by making the substitutions: q ! r,z,/;
k ! kr,kz,v/; y ! q,f,h. It is important to note that while q represents the spatial (i.e., center of mass)
Fig. 1. Cylindrical RTD: (a) side view and (b) top view.
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coordinate with respect to the origin on the cylindrical axis, y represents the spatial coordinate with respect

to the origin at an arbitrary point within the cylinder, not necessarily on the axis. Fig. 1(b) illustrates the

geometry of these two variables. Eq. (1) now becomes:
df ðr; z;/; kz; kr; v/Þ
dt

¼ � �h
m� kr

o

or
þ
v/
r

o

o/
þ kz

o

oz

� �
f ðr; z;/; kz; kr; v/Þ �

2i

ð2pÞ3�h

Z
dk0z

Z
dk0r

�
Z 2p

0

jk0rjdv0/
Z

df
Z

dq
Z 2p

0

jqj dh e�2i½ðkz�k0zÞfþðkr cos v/�k0r cos v
0
/
Þq�

� fV ðr þ q; zþ f;/þ hÞ � V ðr � q; z� f;/� hÞgf ðr; z;/; k0z; k0r; v0/Þ. ð2Þ
Considering a 2D problem in cylindrical coordinates with azimuthal symmetry, the first thing to notice is
that even though the potential is symmetric in / (V(r,z,/) ! V(r,z)), the potential difference is dependent

on angle, V(r ± q,z ± f,/ ± h) ! V(r ± q,z ± f,±h). Next, integrate out the remaining azimuthal spatial

and momentum components. Using
Z 2p

0

Z 2p

0

f ðr; z;/; kz; kr; v/Þjrj d/jkrj dv/ ¼ ð2pÞ2jrjjkrjf ðr; z; kz; krÞ; ð3Þ
one obtains
df ðr; z; kz; krÞ
dt

¼ � �h
m� kr

o

or
þ kz

o

oz

� �
f ðr; z; kz; krÞ �

2i

ð2pÞ3�h

Z
dk0z

Z
dk0r

Z 2p

0

jk0rj dv0/

�
Z

df
Z

dq
Z 2p

0

jqj dh
Z 2p

0

dv/e
�2i½ðkz�k0zÞfþðkr cos v/�k0r cos v

0
/
Þq�

� fV ðzþ f; r þ q; hÞ � V ðz� f; r � q;�hÞgf ðr; z; k0z; k0r; v0/Þ. ð4Þ
The drift term is relatively simple, but the potential term is a bit completed. Rewriting the potential term as
� 2i

ð2pÞ3�h

Z
jk0rj dk0r

Z
dk0z

Z
dfe�2iðkz�k0zÞf

Z
jqj dqJðq; krÞVðz; f; r; qÞFðz; r; q; k0z; k0rÞ; ð5Þ
and using the following definitions
Jðq; krÞ ¼
Z 2p

0

dv/e
�2ikr cos v/q; ð6Þ

Vðz; f; r; qÞ ¼
Z 2p

0

dhfV ðzþ f; r þ q; hÞ � V ðz� f; r � q;�hÞg; ð7Þ

Fðz; r; q; k0z; k0rÞ ¼
Z 2p

0

dv0/e
þ2ik0r cos v

0
/
qf ðr; z; k0z; k0r; v0/Þ; ð8Þ
reduces the complexity. Eq. (6) is just the definition of the Bessel function 2pJ0(2krq). Eq. (7) is evaluated at

a given q,h by noting that qðhÞ ¼ q cos h, leaving Eq. (8) to be dealt with. By expanding the exponential in

terms of Bessel functions of v0/, the integral becomes
Fðz; r; q; k0z; k0rÞ ¼
Z 2p

0

dv0/2p
X
m;m0

Jm0 ð2k0rqÞfmðr; z; k0z; k0rÞe
iðmþm0Þv0

/ ¼ 2p
X
m

Jmð2k0rqÞfmðr; z; k0z; k0rÞ. ð9Þ
Now there is an infinite series in m, but only the term m = 0 must be counted. This is because it represents

the azimuthally independent functions, which, as dictated by the current problem, is the form that the Wig-

ner distribution function, f, should take.
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So, finally, the complete 2D form of the WFE in azimuthally independent cylindrical coordinates is
df ðr; z; kz; krÞ
d

¼ � �h
m� kr

o

or
þ kz

o

oz

� �
f ðr; z; kz; krÞ þ

1

p�h

Z
dk0z

Z
jqj dqUðr; q; z; kr; kz � k0zÞFðr; q; z; k0zÞ;

ð10Þ

where (notice the terms F;U and V have been redefined from what was written above)
Fðr; q; z; kzÞ ¼
Z

jk0rj dk0rJ 0ð2k0rqÞf ðr; z; kz; kr0Þ; ð11Þ

Uðr; q; z; kz; krÞ ¼
Z

df sinð2kzfÞJ 0ð2krqÞVðz; f; r; qÞ; ð12Þ

Vðz; f; r; qÞ ¼
Z 2p

0

dhfV ðzþ f; r þ q cos hÞ � V ðz� f; r � q cos hÞg. ð13Þ
The integral limits are
Rþkmax

z
�kmax

z
dk0z;

Rþkmax
r

�kmax
r

dk0r;
R L=2
0

df, and
R R=2
0

q dq for a cylindrical system of length L and

radius R, recognizing that r > 0 always. It is worthwhile to note here that since the momentum variable

comes from the Fourier transform
R
dre�ik�r, the value of kmax is determined by the spatial length of the

box. This will become important when the problem is discretized.

As others have previously done [3,5], scattering is included simply by the addition of a relaxation time

approximation, given as
df ðr; z; kz; krÞ
dt

����
coll

¼ 1

s
f0ðr; z; kz; krÞ

R
jk0rj dk0r

R
dk0zf ðr; z; k0z; k0rÞR

jk0rj dk0r
R
dk0zf0ðr; z; k0z; k0rÞ

� f ðr; z; kz; krÞ
� �

; ð14Þ
where the relaxation time, s, is computed from the material parameters describing scattering due to: ionized

impurities and longitudinal, piezoelectric, acoustic and optical phonons.
3. Discretization

The WFE in discretized (matrix) form is written as df
dt ¼ ðTþUþ SÞf � B, where T represents the drift

(kinetic) operator, U the potential operator, S the scattering (interaction) operator, f the Wigner function

and B the boundary conditions arising from the drift term. In this section, we will present the details of our

discretization of the equations derived above.
3.1. Variables, operators and functions

The space and momentum variables are discretized as
zðiÞ ¼ 1

2
ð2i� 1ÞDz; i ¼ 1..Nz; Dz ¼ L=Nz; ð15Þ

rðnÞ ¼ 1

2
ð2n� 1ÞDr; n ¼ 1..Nr; Dr ¼ R=Nr; ð16Þ

/ðmÞ ¼ ðm� 1ÞD/; m ¼ 1..N/; D/ ¼ 2p=N/; ð17Þ

kzðjÞ ¼
1

2
ð2j� Nkz � 1ÞDkz; j ¼ 1..Nkz ; Dkz ¼ p=DzNkz ; ð18Þ

krðlÞ ¼
1

2
ð2k � Nkr � 1tÞDkr; k ¼ 1..Nkr ; Dkr ¼ p=DrNkr ð19Þ
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and the functions f, V, and U are discretized as
f ðr; z; kz; krÞ ! f ðn; i; j; lÞ; ð20Þ
V ðr � r0; z� z0Þ ! V ðn� n0; i� i0Þ; ð21Þ

Uðr; r0; z; kz; krÞ ! Uðn; n0; i; j; lÞ; ð22Þ
Vðz; z0; r; r0Þ ! Vði; i0; n; n0Þ; ð23Þ
Fðr; r0; z; kzÞ ! Fðn; n0; i; jÞ. ð24Þ
We note here that since q and f are on the same grid as r and z, they will be denoted as r 0 and z 0,

respectively.
3.2. 2D Poisson equation

We use a Fourier transform method to solve the 2D Poisson equation. The Fourier transform of the

charge density with respect to z, �qe, is calculated using a fast Fourier sin transform (sinFFT). Each shell
exchanges �qe to every other shell so that each shell knows �qeðrÞ, the electron density of the entire cylinder.

Using a standard tridiagonal solver, the sinFFT of the 2D potential, �/ðrÞ, is calculated, then transformed

back (via a sinFFT) to the full 2D potential, /(r,z).

3.3. Drift and boundary conditions terms

We will separate the drift (or kinetic) term into longitudinal and radial components and treat each one

slightly differently. We do this by breaking up
½T � f�ðr; z; kz; krÞ ¼ � �h
m� kr

o

or
þ kz

o

oz

� �
f ðr; z; kz; krÞ ð25Þ
into
½Tz � f�ðr; z; kz; krÞ ¼ � �hkz
m�

o

oz
f ðr; z; kz; krÞ; ð26Þ

½Tr � f�ðr; z; kz; krÞ ¼ � �hkr
m�

o

or
f ðr; z; kz; krÞ. ð27Þ
First the longitudinal drift term, Eq. (26), is computed using a second order ‘‘upwind/downwind’’ differenc-

ing scheme:
df ðxÞ
dx

’ � 1

2Dx
½3f ðxÞ � 4f ðx� DxÞ þ f ðx� 2DxÞ�. ð28Þ
For kz < 0, the upwind scheme is used, and for kz > 0, the downwind scheme is used, giving
kz70 :
o

oz
f ðr; z; kz; krÞ ! � 1

2Dz
½3f ðr; z; kz; krÞ � 4f ðr; z� Dz; kz; krÞ þ f ðr; z� 2Dz; kz; krÞ�. ð29Þ
Which, when discretized, gives ðCj ¼ �hDkz
4m�Dzð2j� Nkz � 1ÞÞ
jQ
Nkz

2
: ½Tz � f�ðn; i; j; lÞ ! � 1

2
Cj½3f ðn; i; j; lÞ � 4f ðn; i� 1; j; lÞ þ f ðn; i� 2; j; lÞ�. ð30Þ
When the second order differencing scheme gets to the boundary, it is advantageous to have the function

extend only one unit distance into the boundary. For the upwind scheme, this occurs at i = Nz � 1 and

i = Nz, and for the downwind scheme at i = 1 and i = 2. (the n and l indexes will be dropped since there
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is no dependence on them). When i = 1,Nz a first order upwind/downwind differencing scheme was

employed ðdf ðxÞ
dx ’ �f ðxÞ�f ðx�1Þ

Dx Þ in order to preserve the continuity of the derivative. By saying that the dis-

tribution function past the boundaries have a constant value, f(i = Nz + 1,j) = f(i = 0, j) = fFermi(j) (the

two-dimensional Fermi distribution), these positions become constant longitudinal boundary conditions,

Bz(i, j), defined as:
j >
Nkz

2
:

Bzði ¼ 1; jÞ ¼ þ2CjfFermiðjÞ; ð31Þ
Bzð2; jÞ ¼ �CjfFermiðjÞ; ð32Þ

..

.

j 6
Nkz

2
:

BzðNz � 1; jÞ ¼ þCjfFermiðjÞ; ð33Þ
BzðNz; jÞ ¼ �2CjfFermiðjÞ. ð34Þ
This makes the final form of the longitudinal drift term, [Tz Æ f](i, j), as:
j >
Nkz

2
:

½Tz � f�ði ¼ 1; jÞ ¼ �2Cj½2f ði ¼ 1; jÞ�; ð35Þ
½Tz � f�ð2; jÞ ¼ �Cj½3f ði ¼ 2; jÞ � 4f ði ¼ 1; jÞ�; ð36Þ
½Tz � f�ði; jÞ ¼ �Cj½3f ði; jÞ � 4f ði; jÞ þ f ði; jÞ�; ð37Þ

..

.

j 6
Nkz

2
:

½Tz � f�ði; jÞ ¼ Cj½3f ði; jÞ � 4f ði; jÞ þ f ði; jÞ�; ð38Þ
½Tz � f�ðNz � 1; jÞ ¼ Cj½3f ði ¼ Nz � 1; jÞ � 4f ði ¼ Nz; jÞ�; ð39Þ
½Tz � f�ðNz; jÞ ¼ 2Cj½2f ði ¼ Nz; jÞ�. ð40Þ
Eqs. (31)–(34) completely define the discretized longitudinal boundary conditions, while Eqs. (35)–(37)
completely define the longitudinal drift for positive momenta and Eqs. (38)–(40) completely define the

longitudinal drift for negative momenta.

Next, the radial drift term, Tr Æ f, is computed using a first order differencing scheme since having each

radial shell talking only to its nearest neighbor is needed when this algorithm is parallelized. For a shell that

has neighbors on both sides, a central differencing scheme (CDS) is used. For the innermost and outermost

shell, a forward/backwards differencing scheme (FBDS) is employed (the indexes i, j are omitted since there

is no dependence on them) (C ¼ ð �hkr
m�DrÞ):
½Tr � f�ðn ¼ 1; lÞ ! �C½f ðn ¼ 1; lÞ � f ðn ¼ 2; lÞ�; ð41Þ

½Tr � f�ðn; lÞ ! �C
2
½f ðnþ 1; lÞ � f ðn� 1; lÞ�; ð42Þ

½Tr � f�ðn ¼ Nr; lÞ ! C½f ðn ¼ Nr; lÞ � f ðn ¼ Nr � 1; lÞ�. ð43Þ
This form dictates that some tricks must be used at the innermost and outermost rings. For the innermost

shell, it can be imagined that any particle possessing negative momenta (traveling inwards) will pass
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through the middle and then posses positive momenta (traveling outwards). This demands a ‘‘particle mir-

ror’’ at the origin by, basically, saying that all values of f ð1; l 6 Nkr
2
Þ at time t will be added to f ð1; l > Nkr

2
Þ at

time t + Dt. For the outermost shell, all values of f ðNr; l >
Nkr
2
Þ at time t will be subtracted from f ð1; l > Nkr

2
Þ

at time t + Dt and, depending on the chosen external conditions, given values of f ðNr; l 6
Nkr
2
Þ will be added

at each time step. This is expressed as radial boundary conditions as (Cl ¼ �hDkr
m�Drð2l� Nkr � 1Þ):
Br n ¼ 1; l 6
Nkr

2

� �
¼ �Cl �f n ¼ 1; l 6

Nkr

2

� �� �
; ð44Þ

Br n ¼ 1; l >
Nkr

2

� �
¼ �Cl þf n ¼ 1; l 6

Nkr

2

� �� �
; ð45Þ

Br n ¼ Nr; l >
Nkr

2

� �
¼ þCl �f n ¼ Nr; l >

Nkr

2

� �� �
; ð46Þ

Br n ¼ Nr; l 6
Nkr

2

� �
¼ þCl½þfGivenðlÞ�. ð47Þ
3.4. Potential term

The potential term in Eq. (10) is written in operator form as:
½U � f�ðr; z; kz; krÞ � þ 1

p�h

Z þkmax
z

�kmax
z

dk0z

Z R=2

0

jr0j dr0Uðr; r0; z; kz � k0z; krÞFðr; r0; z; k0zÞ; ð48Þ
where
Vðz; z0; r; r0Þ ¼
Z 2p

0

d/0fV ðzþ z0; r þ r0 cos/0Þ � V ðz� z0; r � r0 cos/0Þg; ð49Þ

Fðr; r0; z; kzÞ ¼
Z þkmax

r

�kmax
r

jk0rj dk0rJ 0ð2k0rr0Þf ðr; z; kz; k0rÞ; ð50Þ

Uðr; r0; z; kz; krÞ ¼
Z L=2

0

dz0 sinð2kzz0ÞJ 0ð2krr0ÞVðz; z0; r; r0Þ. ð51Þ
For a given longitudinal position and radius, (z, r), one sweeps through disks of constant z 0. For each disk

of constant z 0, the potential difference contribution, V(r + r 0cos/ 0) � V(r�r 0cos/ 0), between all points on
the disk on (z, r) is calculated (see Fig. 1(b)). The result is that the effect of the potential of the entire cylinder

on a given point (z, r) operates on the distribution function for that point. The terms U;F and V each

present some difficulties, but they only involve one integral each. It is best to go through each one

separately.

The V term, when discretized, becomes
Vði; i0; n; n0Þ ¼ D/
XN/

m0¼1

fV ðiþ i0; nþ n00Þ � V ði� i0; n� n00Þg; ð52Þ
where
n00 ¼ n0INT½cos/ðm0Þ� ¼ n0INT½cosð½m0 � 1�D/Þ�; ð53Þ
INT[x] being a function returning the nearest integer to the real value x.
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We rewrite the potential term, by introducing new functions, as
½U � f�ðr; z; kz; krÞ ¼
1

p�h

Z þkmax
z

�kmax
z

dk0z

Z þkmax
r

�kmax
r

dk0rUðr; z; kz � k0z; kr; k
0
rÞf ðr; z; k0z; k0rÞ; ð54Þ

Uðr; z; kz; kr; k0rÞ ¼ jk0rj
Z R=2

0

dr0jr0jJ 0ð2k0rr0ÞJ 0ð2krr0ÞPðr; r0; z; kzÞ; ð55Þ

Pðr; r0; z; kzÞ ¼
Z L=2

0

dz0 sinð2kzz0ÞVðz; z0; r; r0Þ; ð56Þ
where Vðz; z0; r; r0Þ is defined as above. In discretized form, these equations become
½U � f�ðn; i; j; lÞ ¼ p2

�hNkzN
2
kr

X
j0

X
l0

Uðn; i; j� j0; l; l0Þf ðn; i; j0; l0Þ; ð57Þ

Uðn; i; j; l; l0Þ ¼ jð2l0 � Nkr � 1Þj
X
n0

Jðn0; l; l0ÞPðn; n0; i; jÞ; ð58Þ

Jðn; l; l0Þ ¼ jð2n0 � 1ÞjJ 0

p
Nkr

ð2l0 � Nkr � 1Þð2n� 1Þ
� �

J 0

p
Nkr

ð2l� Nkr � 1Þð2n� 1Þ
� �

; ð59Þ

Pðn; n0; i; jÞ ¼
X
i0

rði; jÞVði; i0; n; n0Þ; ð60Þ

rði; jÞ ¼ sin
2p
Nkz

jð2i� 1Þ
� �

. ð61Þ
In performing all these calculations, it is important to remember that in current computing platforms, mem-

ory is both cheap and nicely managed so any number of the terms in these arrays can be calculated once or
once per cycle and stored in advance. By employing distributed computing techniques, a dedicated CPU

can spend its time calculating these arrays while other parts of the program are running. Parallelization

of this algorithm will be discussed in detail below.

3.5. Interaction term

The scattering term is written using the relaxation time approximation
df ðr; z; kz; krÞ
dt

����
coll

¼ 1

s
f0ðr; z; kz; krÞR

jk0rj dk0r
R
dk0zf0ðr; z; k0z; k0rÞ

Z
jk0rj dk0r

Z
dk0zf ðr; z; k0z; k0rÞ � f ðr; z; kz; krÞ

� �
;

ð62Þ

where f0ðr; z; k0z; k0rÞ is the equilibrium WDF. This term, discretized, becomes
½S �~f �ðn; i; j; lÞ ¼ bðn; i; j; lÞ
s

XNkz

j0¼1

XNkr

l0¼1

jð2l0 � Nkr � 1Þjf ðn; i; j0; l0Þ � 1

s
f ðn; i; j; lÞ;

bðn; i; j; lÞ ¼ f0ðn; i; j; lÞPNkz
j0¼1

PNkr
l0¼1

jð2l0 � Nkr � 1Þjf0ðn; i; j0; l0Þ
. ð63Þ
4. 2D matrix setup

It is important that the matrix X = T + U + S be such that the limitations of modern computer sys-

tems are able to handle the above equations in a reasonable amount of time (days and weeks as
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opposed to months). We know of two general methods that are able to efficiently solve the system of

equations generated by the discretization of the WFE: Matrix inversion techniques and direct integra-

tion techniques (explicit Runge–Kutta-like, implicit BDF/Adams, etc). For the matrix inversion meth-

ods, a necessary condition is that either the whole matrix can to be stored in RAM or can be

broken up into parts that can be separately stored in RAM and solved for sequentially (i.e., block diag-
onal matrix). The necessary condition for direct integration techniques is simply that the technique be

stable and fast enough.

Each processor is handling the 1x + 2k problem, which implies a large number or matrix elements/equa-

tions. This number is too large to satisfy the above conditions. In order to remedy this, we try to find a form

of the matrix X that is block diagonal in kr, similar to the 1D problem, but with slightly different terms. We

find that the potential term U cannot be expressed in such a way, and present an alternative method of solu-

tion, using approximation techniques, in Section 5.
4.1. Kinetic matrix (longitudinal)

Following the procedure well defined in previous literature [3,5,11], we say [f(i, j)]l is written in vector

form as ½f1;1f1;2f1;3 � � � f1;Nkz
f2;1 � � � fi;j�1fi;jfi;jþ1 � � � fNz;Nkz

�Tl so we can write that, for a given i, the longitudinal

drift term can be written in matrix form as (< and > denotes downwind and upwind differentiation,

respectively.)
T>
n fi;j;l

!
¼ C

2T n

. .
.

T n

0

. .
.

0

2
66666666664

3
77777777775

fi;1;l

..

.

f
i;
Nkz
2
;l

f
i;
Nkz
2
þ1;l

..

.

fi;Nkz ;l

2
6666666666664

3
7777777777775

l

and T<
n fi;j;l

!
¼ C

0

. .
.

0

T n

. .
.

2T n

2
66666666664

3
77777777775

fi;1;l

..

.

f
i;
Nkz
2
;l

f
i;
Nkz
2
þ1;l

..

.

fi;Nkz ;l

2
6666666666664

3
7777777777775

l

;

ð64Þ

T7

n being a diagonal square matrix of size Nk, and C ¼ �hDkz
4m�Dz. The values of T

7

0 ¼ �3, T 7

1 ¼ �4, T 7

2 ¼ �1

are defined by their position in the complete matrix, as stated by the second order differencing scheme and

the boundaries. By denoting [f]i as a vector of length Nk holding all the momentum (j) values of fij for a

given i, the entire T � f! term is written as
½T �~f �l ¼ Cj

T<
0 T<

1 T<
2

. .
. . .

. . .
.

T<
0 T<

1 T<
2

T<
0 T<

1

T<
0

2
66666664

3
77777775
�

T>
0

T>
1 T>

0

T>
2 T>

1 T>
0

. .
. . .

. . .
.

T>
2 T>

1 T>
0

2
66666664

3
77777775

0
BBBBBBB@

1
CCCCCCCA

½f �1;l
..
.

..

.

..

.

½f �1;Nkr

2
6666666664

3
7777777775

l

; ð65Þ
where Cj ¼ ð2j� Nkz � 1ÞC, and Tl is a block tri-diagonal square matrix of rank NzNkz .

Concerning the radial terms, no matrix operations are needed. Each ring receives the Wigner function

distribution from its nearest inner and outer neighbor and the first order differencing scheme (described

above) is used.
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4.2. Potential matrix

Now, when ½f ði; jÞ�l0 is expressed in vector form (for a given r and kr) as

½f1;1f1;2f1;3 � � � f1;Nkz
f2;1 � � � fi;j�1fi;jfi;jþ1 � � � fNz;Nkz

�Tl0 , we can write Eq. (57) for a given j as
½Vði; l0Þ � fi;j
!
�n;l0

¼C

V n;lði;1� 1; l0Þ V n;lði;1� 2; l0Þ � � � V n;lði;1�½Nkz �1�; l0Þ V n;lði;1�Nkz ; l
0Þ

V n;lði;2� 1; l0Þ V n;lði;2� 2; l0Þ � � � V n;lði;2�½Nkz �1�; l0Þ V n;lði;2�Nkz ; l
0Þ

..

. ..
. . .

. ..
. ..

.

V n;lðNkz � 1� 1; l0Þ V n;lði;Nkz � 1� 2; l0Þ � � � V n;lði;Nk � 1� ½Nkz � 1�; l0Þ V n;lði;Nkz � 1�Nkz ; l
0Þ

V n;lði;Nkz � 1; l0Þ V n;lði;Nkz � 2; l0Þ � � � V n;lði;Nk � ½Nkz � 1�; l0Þ V n;lði;Nkz �Nkz ; l
0Þ

2
66666664

3
77777775

fi;1
fi;2

..

.

fi;Nkz�1

fi;Nkz

2
66666664

3
77777775

l0

;

where V n;lði; j� j0; l0Þ ¼
P

n0Jðn0; l; l0Þ
P

i0rði0; j� j0ÞVði; i0; n; n0Þ and C ¼ p2

�hN2
kr
Nkz

. Since Vn,i(i, j, l
0) � sinj,

Vn,l(i,�j, l 0) = �Vn,l(i, j, l
0) and Vn,l(i, 0, l

0) = 0, the above becomes
½Vði; l0Þ � fi;j
!

�n;l0

¼ C

0 �V n;lði;1; l0Þ � � � �V n;lði;Nkz � 2; l0Þ �V n;lði;Nkz � 1; l0Þ
V n;lði;1; l0Þ 0 � � � �V n;lði;Nkz � 3; l0Þ �V n;lði;Nkz � 2; l0Þ

..

. ..
. . .

. ..
. ..

.

V n;lði;Nkz � 2; l0Þ V n;lði;Nkz � 3; l0Þ � � � 0 �V n;lði;1; l0Þ
V n;lði;Nkz � 1; l0Þ V n;lði;Nkz � 2; l0Þ � � � V n;lði;1; l0Þ 0

2
66666664

3
77777775

fi;1
fi;2

..

.

fi;Nkz�1

fi;Nkz

2
66666664

3
77777775

l0

.

ð66Þ
Note that V(i,l 0) is a Nkz � Nkz anti-symmetric matrix.

By denoting [f]i,l as a vector of length NkzNkr holding all the momentum (j) values of fijl for a given i, l, the

entire U �~f term is written as
½U �~f �n ¼

Vð1; 1Þ Vð1; 2Þ � � � Vð1;NkrÞ
Vð2; 1Þ Vð2; 2Þ � � � Vð2;NkrÞ

..

. ..
. . .

. ..
.

VðNz; 1Þ VðNz; 2Þ � � � VðNz;NkrÞ

2
66664

3
77775

½f �1;1
½f �1;2
..
.

½f �1;Nkr

2
666664

3
777775
; ð67Þ
so that U is a square matrix of rank NzNkzNkr .

4.3. Interaction matrix

Whereas we previously wrote the discrete interaction term in Eq. (63), we rewrite it as
½S �~f �ðn; i; j; lÞ � bðn; i; j; lÞ
s

qðn; iÞ � 1

s
f ðn; i; j; lÞ; qðn; iÞ

�
XNkz

j0¼1

XNkr

l0¼1

jð2l0 � Nkr � 1Þjf ðn; i; j0; l0Þ; bðn; i; j; kÞ

¼ f0ðn; i; j; lÞPNkz
j0¼1

PNkr
l0¼1

jð2l0 � Nkr � 1Þjf0ðn; i; j0; l0Þ
; ð68Þ
where q(n, i) is the density of the previous time step.
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By writing f(i, j) as a vector, ½f1;1f1;2f1;3 � � � f1;Nk f2;1 � � � fi;j�1fi;jfi;jþ1 � � � fNx ;Nk �
T
and by denoting [f]i as a

vector of length Nk holding all the momentum (j) values of fij for a given i, the entire S �~f term is written

as
~R
h i

n;l
� S �~f
h i

n;l
¼ 1

s

½q�1½b�1
½q�2½b�2

..

.

½q�Nz
½b�Nz

2
666664

3
777775
�

Sð1Þ 0 � � � 0

0 Sð2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � SðNzÞ

2
66664

3
77775

½f �1
½f �2
..
.

½f �Nz

2
666664

3
777775
; ð69Þ
where S is a square block diagonal matrix of rank NZNkz and
~R is a NzNkz vector.
4.4. Boundary conditions

By denoting [f]i as a vector of length Nk holding all the momentum (j) values of the Fermi distribution

fFermi(j) for a given i, the longitudinal boundary equations (31)–(34) can be written as
~B ¼ Cj B>
1 ½f �1B>

2 ½f �2 � � �B<
2 ½f �Nz�1B

<
1 ½f �Nz

� �T
; ð70Þ
B7

n ½f �i being a vector of size Nkz ,
~B a vector of size NzNkz , and Cj ¼ �hDkz

4m�Dzð2j� Nkz � 1Þ. The values of

B7

1 ¼ �2;B7

2 ¼ �1 are defined by Eqs. (31)–(34), as stated by the second order differencing scheme at

the boundaries.
5. Methods of solution

5.1. Parallelization

So far, we have dealt almost exclusively with the 1D space, 2D momentum transport problem (1x + 2k).

As stated above, we are working under the assumption that longitudinal transport is more dominant than

radial transport. This allows the total transport to be calculated in two steps: (1) transport the particles

in the longitudinal direction in each shell separately (1x + 2k), then (2) each shell exchanges particles with

its nearest neighbor. This latter step is where we employ parallel processing techniques. The 1x + 2k prob-
lem is performed on P processors, where P is the number of cylindrical shells into which we have divided up

the RTS. Once each shell has advanced a given amount of time, then communication between shells (radial

drift) can commence. As described in Section 3.3, a central differencing scheme (CDS) is used and shown in

Eqs. (41)–(43). The boundaries consist of the material external to the shell and the innermost shell. As per

Eqs. (44)–(47) and explained in Section 3.3, the exterior boundary defines the device. For example, if the

device is a mesa RTS, and there is nothing but vacuum outside the shell, one should choose a boundary

shell that injects into the outermost shell the same particles that the outermost shell ejected (keeping the

momenta the same). If the device is a slab with a circular contact for an emitter, then the material outside
the cylinder is in equilibrium. The boundary shell would be chosen to reflect this.
5.2. Potential transform

As explained is Section 4 and seen in Eq. (67), the Wigner integral (potential term) is the only term that

cannot be made diagonal in kr, leading to a full matrix that is too big to store in memory. If one uses direct

integration methods [1], the number of terms becomes large enough to make the problem intractable. We
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now describe a method of using the Fourier transform property of the Wigner integral to eliminate the kr
dependence inherent in Eq. (11).

We need to have either the matrix X = Tz + U + S be able to be stored in the RAM of present day com-

puters (for the matrix methods), or limit the number of simultaneous equations to solve ( the direct inte-

gration methods). The idea behind our method of solution of the 2D transport equation,
df

dt
¼ Xf � B; ð71Þ
is that if the matrix X is block diagonal in kr then one can progress through all the values of kr solving the

matrix equation at fixed values of kr each time, effectively reducing the simulation to a series of 1D prob-
lems. Unfortunately, the equations for some of the matrix operators are not block diagonal in kr in their

present form. Some manipulation will be needed to obtain block diagonal terms. The drift term is already

independent of kr, and the scattering term is coupled to kr via off-diagonal elements due to the integralR
jk0rj dk0r

R
dk0zf ðr; z; k0z; k0rÞ. This integral is just the 1D density in the shell qr(z), which can be calculated

at the beginning of the time step. This approximation turns the scattering term into the desired diagonal

matrix without losing much detail. The potential term, however, is not so simple. In Eq. (48), the term

Fðr; z; q; fÞ, as defined in Eq. (11), makes the matrix operator U a full matrix. We will now outline a meth-

od to circumvent this problem below.
In order to solve the transport equation, we use an implicit method (first proposed in [3]) by rewriting

Eq. (71) as (dropping the z index from the potential matrix)
�f � f

Dt
¼ ðTþUþ SÞ

~f þ f

2
� B; ð72Þ
where~f means the new (next) value of f in time. Rewriting it as
1� Dt
2
ðTþUþ SÞ

� �
� ð�f þ fÞ ¼ 2f þ BDt; ð73Þ
and making the approximation (accepting error in terms of order Dt2)
1� Dt
2
ðTþUþ SÞ ’ 1� Dt

2
Tþ Sð Þ

� �
1� Dt

2
U

� �
ð74Þ
allows us to write
1� Dt
2

Tþ Sð Þ
� �

1� Dt
2
U

� �
� ð�f þ fÞ ¼ 2f þ BDt. ð75Þ
For convenience, we will rewrite this as
Xf 0 ¼ X0XU f
0 ¼ b; ð76Þ
where we have defined
b ¼ 2ðf þ BsÞ; ð77Þ

s ¼ Dt
2
; ð78Þ

XU ¼ ð1� sUÞ; ð79Þ
X0 ¼ ð1� s½Tþ S�Þ; ð80Þ
f 0 ¼ ð�f þ fÞ. ð81Þ
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The solution to this equation involves solving two matrix equations.

(1) Solve X0C = b for C (quick).

(2) Solve XUf
0 = C for f 0 (impractical).

The matrix XU is still too big to store in memory and, consequently, solving XUf
0 = C for f is not practical

for modern computers. By making the approximation that led to Eq. (75), we are able to solve XUf
0 = C

separately, allowing us to reformulate it in a form more suitable for computation.

Recall that the Wigner integral, U Æ f, was derived by taking the Fourier transforms of the Greens func-

tion, G< [7, Section 6.4]. From the last term in Eq. (10) can be written out in full as
Z
dz0e�i2kzz0

Z
jr0j dr0J 0ð2krr0ÞVðz; z0; r; r0Þ

Z
dk0ze

þi2k0zz
0
Z

jk0rj dk0rJ 0ð2k0rr0Þf ðr; z; k0z; k0rÞ ¼ FVF�1f;

ð82Þ

Vðz; z0; r; r0Þ ¼
Z 2p

0

dhfV ðzþ z0; r þ r0 cos hÞ � V ðz� z0; r � z0 cos hÞg. ð83Þ
The Fourier Bessel transform, F, and its inverse, F�1, are given by
F � Fðkr; kz; r0; z0Þ ¼
Z

dz0e�i2kzz0
Z

dr0jr0jJ 0ð2krr0Þ; ð84Þ

F�1 � F�1ðkr; kz; r0; z0Þ ¼
1

ð2pÞ2
Z

dkzeþi2k0zz
0
Z

dkrjkrjJ 0ð2krr0Þ. ð85Þ
When we define
gðx; yÞ ¼ 1

ð2pÞ3
Z

d3ke2ik�yf ðx; kÞ ¼ F�1f; ð86Þ
we can rewrite XUf
0 = C as
ð1� sFVF�1ÞðFg0Þ ¼ C; ð87Þ

g being the Fourier transform of f and g0 ¼ �gþ g. Some manipulation gives
X0
Ug

0 ¼ c; ð88Þ

where
X0
U ¼ ð1� sVÞ and c ¼ F�1C. ð89Þ
The procedure is now reduced to solving the equation, X0
Ug

0 ¼ c.
The term Fðr; z; q; fÞ, as defined in Eq. (11), can now be written as
Fðr; z; q; fÞ ¼
Z

jk0rj dk0r dk0z
Z 2p

0

dv0/e
þ2iðk0zfþk0r cos v

0
/
qÞf ðr; z; k0z; k0r; v0/Þ ¼

Z
d3k0e2ik�yf ðr; z; kÞ

¼ ð2pÞ3gðr; z; q; f; hÞ. ð90Þ

This lets us define X0

U ¼ ½1� Dt
2
U0� in terms of
U0g ¼ 1

2p2�h

Z
dq dfjqj sinð2kzfÞJ 0ð2krqÞVðr; z; q; fÞð2pÞ3gðr; z; q; f; hÞ; ð91Þ
or, in discrete form, as (completing Eq. (57))
½U0g�ðn; i; j; kÞ ¼ þ 16p
�h

Dr2Dz
X
n0;i0

Uðn; i; n0; i0; k; jÞgðn; i; n0; i0;m0Þ. ð92Þ
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The WDF is recovered by
f ðr; z; kr; kzÞ ¼
Z 2p

0

jkrj dv/f ðr; z; kr; kz; v/Þ ¼
Z 2p

0

jkrj dv/
Z

d3ye2ik�ygðr; z; yÞ

¼ jkrj
Z

dqjqjJ 0ð2krqÞ
Z

dfe�2ikzfgðr; z; q; fÞ. ð93Þ
The complete process to solve the WFE equation is given in the following steps

(1) Solve X0C = b for C.
(2) Define c = F�1C.
(3) Solve X0

Ug
0 ¼ c for g 0.

(4) Recover f 0 from f 0 = Fg 0.
Fig. 3. Initial WDF as a fanciful test distribution.

Fig. 2. Initial WDF as boundary value. (a) Longitudinal phase space for one kr slice. (b) All kr slices put together.
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5.3. Aim and shoot

We find that using direct integration for a system of linear equations grew slower and less stable as the

number of simultaneous equations grew. For example, a 1 fs time step involved hundreds of iterations were

involved, each one taking about 90 s. When using an implicit matrix method, as is standard in the 1D codes,
the matrices were too big to store. Because we have now, using the approximation in Eq. (74), separated the

operator X into the product of a drift/scattering operator, X0, and a potential operator, XU, a combination

of these two methods can be used. As we shown, by itself, X0 can be block diagonal and sparse enough to be

easily solved by either of the two methods. Also, by itself, XU can be rewritten in a form that also can be

easily solved by either of the two methods.

The following method allows us to take advantage of this split is a way that is analogous to the accel-

erated convergence method used to obtain steady-state solutions in the 1D problem [3]. We have dubbed

this a ‘‘aim and shoot’’ approach. The static potential term is calculated on a time scale of dt = 0.01 fs for
only one step, then held constant while the system evolves for Dt = 1 fs. This is the aim part. The shoot part

involves the drift and scattering matrices being solved implicitly by matrix inversion, with the potential term
Fig. 4. Neglecting coulomb interactions: surface and contour plots of the WDF at 10 fs for the Initial WDF of (a) zero, (b)

pseudoFermi, (c) central.
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static. This is fine for a steady-state solution, but it is still uncertain if this method will give the proper tran-

sient behavior of the system.
6. Implementation and simulation results

In the preceding sections a computational method of solving for both the time dependent and steady

state two-dimensional Wigner function transport equation was presented. The 2D equations and compu-

tational method were derived for the case of longitudinal transport through a cylinder while taking account

of the effects of radial momentum in addition to the longitudinal momentum. As previously stated, the

numerical solution is broken into two parts: (1) transport in the longitudinal direction then (2) transport

in the radial direction. The cylinder is divided in to a number of concentric cylindrical shells in which

the longitudinal transport takes place as in the 1D problem, but with the inclusion of radial momentum.
The radial transport involves a simple exchange of particles (dictated by the newly calculated radial

momentum). Sine this step is computationally trivial, this work was concerned with the former step: A

1D space and 2D momentum transport problem (1x + 2k). Below we present some proof-of-principle
Fig. 5. Neglecting coulomb interactions: surface andContour plots of theWDFat 50 fs for the initialWDFof (a) zero, (b) pseudoFermi,

(c) central.
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simulation results obtained using the methods developed in Section 5. From these results, the future use-

fulness of each of these methods, in light of current computing trends, will be discussed.

This simulations were performed on Linux workstations (2 GHz Pentium 4, 1.7 GHz Pentium 4s and

1.2 GHz AMD AthlonMPs). For phase space, our solution method is most easily formulated when

Nz ¼ Nkz and Nr ¼ Nkr since the Fourier transforms between momentum space and displacement space
must be on the same lattice. Simulations were performed on longitudinal phase space grid sizes of

Nz ¼ Nkz ¼ 96 and Nz ¼ Nkz ¼ 48 with radial phase space grid sizes of Nr ¼ Nkr ¼ 2; 4; 8; 16; 20. In all of

the simulations presented, the device is constructed of bulk n-doped GaAs with a RTS of undoped

GaAs/Al0.3Ga0.7As with a barrier potential is 0.3 eV. The device temperature is 77 K, the electron effective

mass is 0.0667m0 and the donor density is 2 · 1018 cm�3. The cylinder has dimensions of 1000 Å in both

length (z) and diameter (r). For most of the simulations the active RTS region is approximately 170 Å,

the well, spacer and barrier lengths being 50, 30 and 30 Å, respectively.

Each numerical experiment has been carried out in the following way. First, the cylinder is populated
with electrons according to one of three specific WDF: (a) f(z,kZ,kr) = 0, corresponding to no excess

electrons in the cylinder, (b) f(z,kZ,kr) = fFermi, corresponding to the same distribution of the metallic

leads (Fig. 2), and (c) a fanciful distribution corresponding to electrons mostly at the center of phase

space (Fig. 3). To be exact, an error was made in preparing for case (b). We meant to set the WDF
Fig. 6. Neglecting coulomb interactions: surface and contour plots of theWDFat 100 fs for the initialWDFof (a) zero, (b) pseudoFermi,

(c) central.
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each kr slice to the Fermi distribution of the boundary of that specific kr slice. This way the integral of

the total WDF would be unity, as expected. Instead, we accidentally normalized the WDF of each kr
slice such that the integral of the WDF in each slice in unity. We have kept this error here for the reason

that the simulations illustrates that the system will adjust itself and still tend toward the expected result.

Next, at zero bias, the system is allowed to evolve with scattering turned off. The system is allowed to
evolve for a suitable time, until it settles into a steady state, and then scattering is turned on. During this

time, the previous step�s value of the WDF is used as the ‘‘equilibrium value’’ needed in the relaxation time

approximation of the present step. Once again, the system is allowed to evolve for a suitable time, and at

this time, the current WDF is set to be the ‘‘equilibrium value’’ for the rest of the evolution, which contin-

ues until the system settles into a steady state. By observing this time evolution of each of the three cases, we

can determine how well a given method behaves as well as gather timing and other information. Although

measurable quantities, such current and carrier densities, are calculated from the WDF by our simulation,

due to space constraints, we will restrict our discussion to the evolution of the WDF only. For the test prob-
lems we examine, such quantities other than the WDF will yield little useful information into the correct-

ness of our algorithm.
Fig. 7. Neglecting coulomb interactions: surface and contour plots of theWDFat 200 fs for the initialWDFof (a) zero, (b) pseudoFermi,

(c) central.
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One important item of note is that the examples below are performed with Nz ¼ Nkz ¼ 96 and

Nr ¼ Nkr ¼ 2. In effect we are including only one positive and one negative radial momentum value. While

this is fine for testing purposes where we are basically reducing the simulation to a 1D problem, for a real

2D problem Nkr and Nr should be large enough (	16) to encompass a phase space greater than the radial

Fermi momentum of the material outside the cylinder. The computational issue is that while Nr ¼ Nkr ¼ 2
can be solved in under 20 min for a 2000 fs run at time steps of 1 fs, the addition of more radial points in-

creases the time dramatically (this will be mentioned below). As a result, the phase space plots given are

showing only one value of the radial momentum (the positive momentum) since they are symmetric in this

case.

In order to follow the time evolution of this system, we have employed two different types of integration

methods: Direct integration (explicit) and Matrix solvers (implicit). Direct integration is done using a pre-

packaged integrator called ROCK4 [1], which is a fourth order Runge–Kutta like integrator for a system of

equations. With ROCK4, there is no need to compute and store the right hand side of the discretized
equation as a general band matrix, and consequently, no need for a matrix inversion of the time evolution

operator which have been used in previous simulations. Instead, all that is needed is to calculate the right

hand side on the fly. Implicit integration is done by using LAPACK [2] to solve the matrices.
Fig. 8. Neglecting coulomb interactions: surface and contour plots of the WDF at 1000 fs for the initial WDF of (a) zero,

(b) pseudoFermi, (c) central.
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6.1. Direct integration methods

Not much will be said for the explicit method since, on the same computer as the runs below, after

36 min the method progressed only to a time of 14 fs. When the number of radial grid points is increased

from 2 up to 8, the number of equations increases 256 times the original number. This fact renders ROCK4
useless for any future 2D simulations. Recently, we have been introduced [8] to implicit direct integration

methods (BDF/Adams) and Newton solvers that, so far, outperform the ROCK4 method for the 1D sim-

ulations. We have yet to include this method in our 2D simulations. The next phase of the ongoing research

is to see how such methods compare to what we will present below.
6.2. Matrix split

The so-called matrix split refers to the method described in Section 5.2, which is when taking the WFE,
apply the approximation of Eq. (74) and split the matrix X into a product of a drift/scattering matrix and a

potential matrix (Eq. (75)). This can be written as
Fig. 9. Neglecting coulomb interactions: surface and contour plots of the WDF at 2000 fs for the initial WDF of (a) zero,

(b) pseudoFermi, (c) central.
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Xf 0 ¼ X0XU f
0 ¼ b; ð94Þ
The solution to this equation involves solving two matrix equations, one for the drift/scattering
X0C ¼ b; ð95Þ
and one for the potential
X0
Ug

0 ¼ c. ð96Þ
In solving the potential equation, we must perform an inverse transform, c = F�1C, and then a transform,

f 0 = Fg 0.

Figs. 4–15 illustrate the time evolution of our device up to 2000 fs. Each figure is a snapshot in the evo-

lution of three WDFs whose initial values are one of the three discussed in Section 6. They will be referred

to as (a) Zero – f(z,kZ,kr) = 0, (b) pseudoFermi – f(z,kZ,kr) = fFermi, (Fig. 2) and (c) central initial values –

electrons mostly at the center of phase space (Fig. 3). In each figure, the left column shows the WDF plotted

in 3D, while the right column shows a contour plot of the WDF. We will examine two distinct sets of cases
to illustrate our method. The first will have the potential term set to zero, corresponding to no coulombic
0. Including coulomb interactions: surface and contour plots of the WDF at 10 fs for the initial WDF of (a) zero,

udoFermi, (c) central.



Fig. 11. Including coulomb interactions: surface and contour plots of the WDF at 50 fs for the initial WDF of (a) zero,

(b) pseudoFermi, (c) central.
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interaction (Note that this has the effect of rendering the barrier invisible in the constant effective mass

approximation.) The second will include the coulombic effects.
6.2.1. Potential ‘‘Turned Off’’

Figs. 4–9 show the evolution of the electron distribution in our device without any coulomb interactions.

We see that for each of the three WDFs, the system behaves as expected. With a zero initial WDF, we see

the electrons move in from either end of the device with the high momentum carriers further in than the low

momentum carriers. As time progresses, the phase space fills with carriers and the WDF tends towards the

distribution of the boundaries, namely, the Fermi distribution. The next case, that of the initial WDF set to

the PseudoFermi distribution, shows the excess carriers leaving the system. Ultimately, the phase space
once again tends towards the distribution of the boundaries. In the final case, the central distribution,

we see the carriers moving in from the boundary, as in the first case. At the same time, the central distri-

bution itself relaxes, with the positive momentum carriers moving one direction and the negative momen-

tum carriers the other way. Eventually, the central distribution relaxes while the boundary carriers move in.

Once again, the end result tends towards the boundary distribution.



Fig. 12. Including coulomb interactions: surface and contour plots of the WDF at 100 fs for the Initial WDF of (a) zero, (b)

pseudoFermi, (c) central.
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All three of the different initial WDFs evolve towards the same, expected, final WDF. This simply shows

that the drift/scattering part of the simulation works as expected, which is expected. What we can learn

from this exercise is the CPU time to calculate the drift and scattering terms up to 200 and 2000 fs (Table
1). As stated above, this is the first of two matrix equations that must be solved. We see from the table that

this is not where most of the CPU will spend its time. Rather, the potential term will take the bulk of the

computing time. Next, we see how the simulation behaves when this term is turned on.

6.2.2. Potential ‘‘Turned On’’

Figs. 10–15 show the evolution of the electron distribution in our device including coulomb interactions.

We can compare the simulations of these three cases with coulombic interactions to those above, where

coulombic interactions were ignored. By following the evolution of the first case (zero initial WDF), we
see how the carriers interact with the barriers as they move towards the center of the device. We also

see (more clearly in the contour plots) how the carriers interact with each other, spreading out slightly

as the progress inwards. In Figs. 12 and 13 we begin to see the interaction of the reflected carriers with

the incoming carriers. This effect grows as the system evolves, which is evident in the dark/light patterns

along the momentum axis. The same effects are seen in the other two cases, with the exception that they

begin with the unlikely distribution having carriers in the barriers. We see these carriers begin ejected from



Fig. 13. Including coulomb interactions: surface and contour plots of the WDF at 200 fs for the initial WDF of (a) zero,

(b) pseudoFermi, (c) central.
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the barrier region at high momentum at first, then at later times these cases evolve to same result as the first

case, where we see the expected WDF.

As we increase Nr ¼ Nkr from 2 to 4, a 200 fs run increases from about 1 min 40 s to 5 min (a factor of 3).

Projecting this to 2000 fs, we see the simulation would take approximately 47 min to complete. So far, this

is not unreasonable, since for a given bias point, a 2000 fs run is enough to assure convergence. A 90 point

IV curve (including the reverse sweep) would take about 70 h (about 3 days). Increase Nr ¼ Nkr to 8 and a
200 fs run takes 20 min (4 · Nr = 4, or 12 · Nr = 2). A 2000 fs run will take 31

3
h, which means a 90 point IV

curve will take 12.5 days. A beginning run at Nr ¼ Nkr ¼ 16 returns a time rate of 38 s/fs. At that rate, a

2000 fs run would take 21.1 h and a 90 point IV curve almost 80 days.
7. Conclusions

We have shown here a 2D drift/scattering and 3D potential form of the Wigner function transport equa-
tion for the case of a cylindrical device. This is an important step in Wigner function simulations of elec-

tronic transport since previous simulations have been restricted to 1D drift/scattering and 1D potential.

Any comparison to a real device must answer the question of how important both radial drift/scattering



Fig. 14. Including coulomb interactions: surface and contour plots of the WDF at 1000 fs for the initial WDF of (a) zero, (b)

pseudoFermi, (c) central.
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and a non-1D coulombic charge density are. We now have a framework developed to examine these

questions.

The exact effect of the radial drift/scattering will depend on the device parameters. Specifically, the WDF

radial boundary condition at the outermost shell (Eqs. (46) and (47)) can be set up to describe a planar

device (allow electrons to flow out) or a ‘‘quantum mesa’’ device (vacuum outside, therefore the electrons

cannot exit). In the former case, we would simply see a decrease in the current density with radial distance

(the magnitude of which is dependent on the device geometry). We are currently working on implementing
a method where the radius of the ohmic contact at the emitter can be smaller than the device radius in order

to perform a more realistic simulation. In the case of a quantum mesa, their should be carrier build up at

the radial boundary thereby confining all radial transport, changing the quantum well into quantum dot

[10]. It is this device that we ultimately hope to examine in detail.

The computational hurdles of solving a 2D WFE have been identified: (1) not all the matrices are sparse

enough to fit into the RAM of present day computers, and (2) direct integration becomes more time con-

suming as the number of simultaneous equations to solve grows large. Some solutions of these hurdles have

been described and a workable way of numerically simulating a RTS that exhibits cylindrical symmetry has
been given. If one can separate the operator X = Tz + U + S into the product of a drift/scattering operator



Fig. 15. Including coulomb interactions: surface and contour plots of the WDF at 2000 fs for the Initial WDF of (a) zero, (b)

pseudoFermi, (c) central.
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and a potential operator, then each matrix can be made sparse (overcoming the first hurdle) and/or block

diagonal (the second hurdle). This also allows the separation of the transport problem into a two step prob-

lem, drift/scatter and potential computations. An additional time saving method, based on this split, is

introduced. Finally, but taking advantage of the Fourier transform nature of the potential term, one can

decrease the operator size substantially further.

Time evolution simulations based on these method were then presented for three different cases. Each

case lead to numerical results consistent with expectations. To the author�s knowledge, this is the first

proof-of-principle of a 1D space, 2D momentum simulation. At the present time, a full transient treatment
Table 1

Timings for the matrix split runs

Potential U 6¼ 0 U = 0

# Time steps: 200Dt 2000Dt 200Dt 2000Dt

Initial Zero 0 min 7.428 s 0 min 51.376 s 1 min 38.178 s 16 min 37.437 s

WDF PseudoFermi 0 min 7.349 s 0 min 51.762 s 1 min 36.676 s 15 min 45.484 s

Value Central 0 min 7.396 s 0 min 52.361 s 1 min 35.993 s 15 min 38.711 s



G. Recine et al. / Journal of Computational Physics 209 (2005) 421–447 447
of a forward/backwards bias sweep would take upwards of 3 months. The work shown here still must be

numerically scrutinized in order to shorten the computer times involved, our goal being the enhancement of

the PDE solver. One important item to remember is that the computational hardware is still following

Moore�s law, that is, approximately doubling in speed every 18 months. In a few years, the techniques

shown here, which push current technology to the limit, will prove to be even more feasible in the foresee-
able future.

It is our belief that the methods outlined in this paper will finally allow a full treatment of the RTS trans-

port problem.
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